Certificates for Nonnegativity of Polynomials with Zeros on Compact Semialgebraic Sets
نویسنده
چکیده
We prove a criterion for an element of a commutative ring A to be contained in an archimedean semiring T ⊂ A. It can be used to investigate the question whether nonnegativity of a polynomial on a compact semialgebraic set can be certified in a certain way. In case of (strict) positivity instead of nonnegativity, our criterion simplifies to classical results of Stone, Kadison, Krivine, Handelman, Schmüdgen et al. As an application of our result, we give a new proof of the following result of Handelman: If an odd power of a real polynomial in several variables has only nonnegative coefficients, then so do all sufficiently high powers.
منابع مشابه
Some compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملRational Certificates of Positivity on Compact Semialgebraic Sets
Given g1, . . . , gs ∈ R[X] = R[X1, . . . , Xn] such that the semialgebraic set K := {x ∈ R | gi(x) ≥ 0 for all i} is compact. Schmüdgen’s Theorem says that if f ∈ R[X] such that f > 0 on K, then f is in the preordering in R[X] generated by the gi’s, i.e., f can be written as a finite sum of elements σg1 1 . . . g es s , where σ is a sum of squares in R[X] and each ei ∈ {0, 1}. Putinar’s Theore...
متن کاملNonnegative Polynomial with no Certificate of Nonnegativity in the Simplicial Bernstein Basis
This paper presents a nonnegative polynomial that cannot be represented with nonnegative coefficients in the simplicial Bernstein basis by subdividing the standard simplex. The example shows that Bernstein Theorem cannot be extended to certificates of nonnegativity for polynomials with zeros at isolated points.
متن کاملOn the construction of converging hierarchies for polynomial optimization based on certificates of global positivity
Abstract. In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial optimization problems (POPs) have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on ...
متن کاملMinimizing Polynomials Over Semialgebraic Sets
This paper concerns a method for finding the minimum of a polynomial on a semialgebraic set, i.e., a set in R defined by finitely many polynomial equations and inequalities, using the Karush-Kuhn-Tucker (KKT) system and sum of squares (SOS) relaxations. This generalizes results in the recent paper [15], which considers minimizing polynomials on algebraic sets, i.e., sets in R defined by finitel...
متن کامل